企业如何靠大数据发展?

魏素魏素最佳答案最佳答案

谢邀 最近一直在外边出差,正好有空来回答一下这个问题~ 目前国内企业的数据建设大体上分两种,一种是以业务为导向的数据仓库建设,一种是以技术为导向的数据挖掘、数据分析。 以业务为导向的数据仓库的建设主要体现为对业务流程的优化和监管,其目标是提高决策的精准度和效率;以技术为导向的数据挖掘、数据分析则更多地体现在对海量数据的快速处理及模型构建的能力。这两种不同导向的数据对于数据的采集方式、组织、分析工具应用都各有侧重。

目前很多企业都是在原有的数据库的基础上做一下简单的数据抽取就可以进行简单的数据分析,这种方法虽然简单,但是在数据分析的过程中存在诸多问题。首先,基于传统数据库的数据分析难以满足实时海量数据处理的要求;其次,当数据量增大到一定程度的时候,传统的关系型数据库本身所具有的性能瓶颈就使得其难以胜任复杂分析的任务;最后,传统关系型数据库是针对结构化数据的设计,然而现实世界纷繁复杂,存在大量半结构化的甚至是无结构化的数据,这些数据的分析也是传统关系型数据库无法胜任的。

为了适应新的时代要求,企业和相关从业人员需要重新思考并搭建适于大数据环境下的新的数据组织和计算框架。

1.数据采集 大数据通常涉及非结构化和半结构化数据,对于这些数据的组织传统的方案是采用数仓(Data Warehouse)的方式通过ETL将其统一加载到数仓中进行集中化管理。这是一种“过滤”式的信息提炼方法。大数据环境下,由于数据来源广泛且形式多样,采取这样的方法显然已经不行。

现在比较合适的方法是由业务部门提出自己的数据需求,IT部根据业务的需求去采集相应类型的数据并进行标准化处理。这种需求引导式的数据采集方式更适用于大数据的环境。

2.数据挖掘与分析 利用大数据的技术实现对海量数据进行快速、个性化和深度的分析是实现业务目标的关键。其中,数据挖掘是一种概念或范畴大于具体技术手段的知识发现过程。它是指从大量的、不完全的、有噪声的、模糊的和随机的实际应用数据中,挖掘出隐含在其中有价值的信息的过程。经过数据挖掘后得到的知识主要有规则、规律、特征等,而这些知识的表达都是数据的形式,因此最终的数据挖掘结果仍然表现为一个大数据集。

惠烘惠烘优质答主

1、数据资产化成为可能。

数据成为一种新的生产要素,将推动企业管理和政府的决策由经验驱动向数据驱动转变,由被动反应向主动预见转变,由个人主观判断向群体智慧转变。数据资产化将推动企业发展更加关注数据采集、集成、共享和应用,推动政府完善公共信息服务和信息惠民。

2、企业组织方式发生重大变化。

在大数据产业创新发展的新形势下,未来企业组织方式将不再遵循传统的由资本、管理、规模决定的企业金字塔架构,而是以客户为中心的扁平化网状架构,客户将企业粘合起来,企业的产品、服务和营销将更加快速、敏捷、精确地响应客户需求。在大数据时代,企业的竞争是数据和信息的竞争,只有建立数据驱动型企业,充分利用数据资产,才能在未来的竞争中获得生存和持续发展的空间。

3、推动智慧城市健康发展。

未来政府管理和公共服务将更加聚焦提升城市综合承载和运营管理能力,更加注重城市公共服务和产业发展等数据的深度融合与开发利用,利用城市大数据,推进城市向更加便捷、更加高效、更加“智慧”方向发展,使城市更加宜居宜业。智慧城市建设和运营主体将由地方政府唱‘独角戏’转向更加注重发挥市场力量作用,推动政府、市民、企业共建共享。

4、推动我国经济向中高端水平迈进。

未来我国大数据发展将加快促进信息消费和促进“四化”同步,加快产业转型升级,推动我国经济向中高端水平迈进。在新一代信息技术中,大数据技术在工业、医疗健康、教育、能源等领域已经初见成效。我国大数据发展将为互联网工业、智能制造、智慧城市、数字农业等新模式的发展提供重要的支撑,通过新一代信息技术与制造业、农业、服务业的深度融合,使我国产业快速跃升。

随着大数据的发展,社会的变革将更加深入,人们对未来有了更多的期待,大数据会为我们带来更加便捷、智能的生活方式。

我来回答
请发表正能量的言论,文明评论!